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Fault Diagnosis of a Gearbox Using the Sliced Wigner Fourth
Order Time Frequency Method Smoothed by a
New Kernel Function

Sang-Kwon Lee*
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The detection of impulsive signals embedded in the broadband noise is useful for the fault
diagnosis of a gearbox. The sliced Wigner fourth-order time frequency method (SWFOTFM)
has been used for the detection of impulsive signals embedded in the broadband noise. However.
one disadvantage of SWFOTFM is that the non-oscillating cross-terms cannot be smoothed by
conventional kernel functions. In this paper. a new kernel function is developed to reduce the
non-oscillation cross-terms. The SWFOTFM using the new kernel function is successfully

applied to the fault diagnosis of a gearbox.
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1. Introduction

Recently, the bilinear class of time-frequency
representations for impulsive signals has been
applied successfully to the diagnosis of machinery
{Lee and White, 1997a; Lee and White, 1998a ).
The bilinear class of time-frequency representa-
tions describes a signal’s second order statistics as
a function of time, and are suited for the analysis
of non-stationary signals. Recently a good deal of
research has been done on the ahalysis of non-
stationary signals using higher-order spectra.
Most of this research explores the linkage between
HOS and time-frequency distributions. Gerr
(Gerr, 1993) was the first to try to link higher-
order statistical analysis with non-stationary
analysis. He defined the 3™ order Wigner-Ville
distribution for deterministic signals, which was
later extended to an n-+ 1™ order moment-based
Wigner-Ville distribution (Fonollosa and Ni-
kias, 1993), referred to as WHOMS, that is based
on the instantaneous y+ 1" order moment func-
tion.

The Wigner distribution has been used widely
used because it has good time and frequency
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resolution properties {Cohen, 19935). However,
the Wigner distribution for signals with multi-
components has unwanted cross-terms, as does
WHOMS for signals with multi-components. The
number of cross-terms in WHOMS for signals
with multi-components increases dramatically as
the order increases {Lee and White, 1997b). In
order to reduce the number of cross-terms, sliced
WHOMS have been used. Sliced WHOMS has
better detection performance of impulsive signals
embedded in the broadband noise than the
Wigner distribution. However, even sliced
WHOMS cannot reduce the number of cross-
terms for signals with multi-components at the
same frequencies but different times, because there
exist non-oscillating cross-terms which cannot be
smoothed in the Wigner distribution by conven-
tional kernel functions such as the exponential
kernel function (Choi, 1989). In this paper. in
order to smooth the non-oscillating cross-terms,
SWHOMS weighted by a new kernel has been
developed. The new kernel can smooth the non-
oscillation c¢ross-terms successfully. In general,
impulsive signals occur but are embedded in the
broadband noise when a gearbox has fatigue
damage. Thus. the detection of impulsive signals
is useful for the fault diagnosis of a gearbox.
SWHOMS has been used for the detection of
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impulsive signals embedded in the broadband
noise in a gearbox (Lee and White, 1997b}.
However, the non-~oscillating cross-terms often
hinder the detection of fault signals embedded in
broadband. In this paper, SWHOMS using a new
kernel function is applied to the early detection of
gearbox damage.

2. Cross-Terms Analysis of WHOMS

The WHOMS of order n+1 is defined by
Fonollosa (Fonollosa and Nikias, 1993) as

W',(f fh T fn ::'r[‘tj: R7€+1(f7 Tin 77 Tn)
[Te™ e dr, ()
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The notation (*)! is introduced to denote
alternating conjugations; for odd ;, (*)? denotes
conjugation, while for even ; no conjugation
occurs. while Equation (2) defines a set of pos-
sible distributions for different values of (, in
order to extend most of the properties of the
WVD, the lag centecing condition has to be
imposed. requiring thart
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Thus, the WHOMS can be rewritten as
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By expressing s{¢) via an inverse Fourier

Transform in Equation (4), an alternative defini-
tion for WHOMS is as follows:
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where n==1. n=2, and n=13 are the Wigner-Ville
distribution {WVD), the Wigner third order-
moment specirum (WTOMS) and the Wigner

fourth-order moment spectrum (WFOMS),
respectively.

In the following, we present expressions for the
cross-terms of the WVD, the WTOMS, and the
WFOMS. Consider a signal x(#) which consists

of two components s, (¢) and s, (¢) :

x(8) =5,{1) +55(£) (6)

Moreover, consider the following specific form
of the two components :

salt) =5 {F— 1) @™t {7a)
Solt) =s{t— k) ™! (7b)

where s(¢) is a prototype signal, ¢, and £, are
time shifts, and 7, and f, are frequency shifts. In
general. the »-+ I'" order Wigner distribution for
wo component signals is the sum of 27*! distribu-
tions, of which two are auto-terms and 27+ -2
are cross-terms. A general expression for the
cross-terms in the signal of the form (6) can be
developed. These expressions are derived by sim-
ply substituting {6) and (7) into the definitions
of the distributions, and performing simple but
tedious manipulations {(Lee, 1998b).

(1) The Wigner-Ville Distribution

Wolts £ pq= Wes{t — by [ fu)
ej'lﬁ(,"diié-ﬁ?-fm&)’ ﬂs(]E{(l- b} (8)

where to={(f,+1)/2 fa=(fo+/d/2 O=1
—tor far=fa—For and W (¢, f) isthe WVD of
(t). By way of an example of the above notation.
Walt, /las (p=a, g=245) represents the cross-
term between s,(¢) and s,{(#). The complete
W VD of v () is the sum of all components 17;(¢.
f)pq From (8) it is clear that Wi(¢, f)ae=Wh
(t. f)*,. ensuring that the final distribution is
real. Further, note that Wi (¢, /). and We(t F)
0o are stmply Wss{#, £ repositioned in the time-
frequency plane.

[t is also apparent that the cross-terms are
oscillatory and that the rate of oscillation in the
frequency direction (f=constant) is § and the
rate of oscillation in the time direction (f=con-
stant) is £,;,. Thus, the cross-terms oscillate more
rapidly the further apart the signal components
are. Assuming smoothing is used to reduce the
cross-terms, it is the rapid oscillations which are
most easily attenuated, with the result that the
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cross-terms between closely spaced components
are more troublesome to aitenuate than the cross-
terms between distant components.

{il) The Wigner third order moment spectrum
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where fnp={(fp+te+16)/3 fo={fo+Ffi—fo)/3
Si=tp—ir Sm={H+ 82373, and Wi (2, Fi f2) is
the WTOMS of s(#). In this case the auto-terms
{(p=g=r=q and p=g=p=4p) are oscillatory
due to the @@ «2* term, which is the only
coniributing exponential term. Further, the auto-
terms are not located at the {requency points one
might anticipate; for example, iff we assume p=g
=yp=gq, then f,=f,/3 and the auto-term is
centered on the frequency pair (A=2£,/3, o =2
£4/3).

(iity The Wigner Fourth-Order Moment Spec-
trum '

Wa(z. He far f.’i) P, 87 Wsss (£ — Eme fi
+faof 8= for ot fas/ 3 Fro fot Fas/d
- ﬁ ) % é,x'm./m+j.3:+jzdz+fscs+fac3.—m—Mm— 52)'1‘5(55-23')-,&35:),

b oq. . ses{a, b} (10}

where fo,={fo+Ffi~fo—fr): B=ti—ts On>=
(Si+38:+8) /4 and Wess(t, fi, fo fo) is the
WFEFOMS of s{¢). In this case the auto-terms are
non-oscillating and are located at the ‘natural’
position. To see this, take p=g=r=s=g in
which case f,,=0 and the auto-terms are centered
on the frequency triplet (fi=/fo foi=Ffo =Fa)

The full WHOMS is a funcnion of n-+1 vari-
ables. This presents problems when atiempting to
display results, since the resulting plots exists in »
+2 dimensional space. The computation of
WHOMS also imposes a heavy computational
burden as one is required to perform z dimen-
sional FFTs for each time segment. For these
reasons it is common to consider a subset of
WHOMS called the principal slice (Lee and
White, 1997b). The principal slice is defined as
the only plane in which a single complex
exponential appears as a Dirac delta. For the
WTOMS this plane is defined by fi=f,=F and n
=2 in Equations (4} and (5}. For WFOMS this
plane is obtained by setting fi= — = fy=f and

p=23. This slice generally includes both auto-
terms and cross-terms and, as we show below, the
number of cross-terms is significantly reduced.

In WTOMS, the only terms of (9) guaranteed
to lie on the principal slice, i e., which satisfy the
condition that the two frequency arguments are
equal, are those such that g==y-. This reduces the
number of cross-terms from 6 to 2, and (9)
becomes

Walt: ) par=Wess (= tms [+ Faof 3~ f2)

ejzz(fdz+2fa—xi3fma)’ B (16{&?- b} (H)

The remaining two cross-terms Wi (£, ) 2.0 and

Walt, F)oaq are centered on {((24,+4)/3. (2

+£)/3) and ({fa+28) /3. (fat £} /3). respec-
tively.

By taking the principal slice of WFOMS, the
only terms in (10) which are guaranteed to
remain are those for which y=p and g==¢, so the
original 14 cross-terms in WFOMS reduce to
only two in its principal slice. The principal slice
version of (10) is

VVd(fa f)-p.qz u’rsss(i"' tme f'" (fp+fq) /2)
ejz:r(Zfa'st-FZfé‘—ZImS)‘ pﬁ qe{a’ b} ([2)

This should be compared with the correspond-
ing expression for the standard Wigner distribu-
tion {8). In both cases the cross-terms are located
mid-way between the awo-terms and oscillate at
rates proportional to the separation of signal
components.

While (12) describes all the terms which neces-
sarily lie on the principal slice, if the two fre-
quency shifts are equal, 7. ¢., fo=Ff,, then f,, =0,
in which all the elements of (12) lie on the
principal slice, and we can write

Iﬂ(f ][} .G, 7,8 !ssss{f“‘fm f[”'fﬁ}

pIFlts— tat tr—tsiF —fp) (13

These components are located in time at quar-
ter intervals between £, and ¢,. None of the terms
in (13) oscillates as a function of time; further,
for terms sausfving f,— 4, +6—£4=0, (13) is
completely non-oscillatory. These non-oscillator-
y terms are difficult to distinguish from the auto-
terms; for example, conventional smoothing will
fail to attenuate them {Lee and White, 1997b).
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3. Smoothing of Non-Oscillating
Cross-Terms in the Sliced WHOMS

In order to smooth effectively the non-oscillat-
ing cross-terms in the slticed WHOMS, cousider
the frequency version of the WVD :

. 1. o1
Wit =18 rrye)s(r—5¢)
e—j?kﬁtdf “ 4)
distribution (PWD)
(Classen, et al,, 1980), can be written using the
frequency domain windowing function H(5/2)
as follows:

The pseudo-Wigner

Wt A=l =5 ()5 7425 -3¢
o s = H (= &) H* () §°
(f+EVS(f—E) e #ege (15)

where &' =2/2. Using convolution, Eq. (15) may

be written as follows:

Wow(t. f)=si{f. 20) * 54/ 20) (16)

where g, (f, #) is the short time Fourter transform
(STFT) (Cohen, 1995), Therefore, the PWD can
be written as

Wi {8, £y =3s5(/. 28 % S (fs 28
=Jst(f 2—0dr (17)
Z_};si‘(f, t+o)salf -0 dr

In order to emphasige the auto-terms of the
PWD for a multi-component signal, a window
function y(z) can be incorporated into Eq. (17),
and the smoothed pseudo Wigner distribution
{SPWD) can be developed as follows:

Wosow (1. /)= ] 7 (D st(f t+0)
stfot—n)dr (18)

Therefore, using the ambiguity plane (&, )
(Claasen, 1980), the kernel function for this
window function y(r) can be developed as fol-
lows:

Q(r. &Y=y(D ng,sp(Ea 7) (19)

where A4, (& 1) is the general ambiguity
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Fig. 1 [llustrate the proper width of the »{r) win-
dow function (a) convolving signal sf(4)
(&) convolving of signal 5,(H) (¢) T, >#

/2= Ta (@) T,<ti= /2T,

function associated with the spectrogram of signal
s{¢). We refer 1o this kernel function as the y
method. In Eq. (18). when y(7)=1. the SPWD
becomes the WVD, and when y{(¢)=4(r). the
SPWD becomes the spectrogram. Therefore, in
order to smooth the cross-terms of the WVD for
the signal of the form of Eq. (6), the duration T,
for ¥(r) needs to be selected in accordance with
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dti— 1

T.< T<ming,J i_) b ~ T (20)

where #; and {; are the temporal positions of the
signal components, and 7, is the duration of %
().

An intuitive justification for Eq. (20) can be
seen with reference to Fig. 1. Consider the convo-
tution of s, (f, 2¢) and i (/. 2f) using a rectan-
gular window y(¢). In order that only the auro-
terms are convolved, Eq. (20) should be satisfied
as shown in Fig. 1(c). Otherwise, the cross-terms
will also be included in the convolution, as
shown in Fig. 1{d).

The SPWD is obtained by convolving two
signals s, (. 2¢) and sF(f, 2¢) with respect to
time and using the y-method to smooth the cross
~terms in Eguation (18). Similarly, a4 smoothed
version of SWFOMS also cun be obtained by the
convolution of two SPWD W, o, (f, 2¢) and W
2 spw (F» 2F) with respect to time as follows:

Woapw (£ )= 7(D) * Waamf. 147)
* Wl (fs 1) dr (2nH
Therefore, a general form of the smoothed

version of sliced WHOMS can be obtained as
follows:

Wassomfs ) =50 7(2) + Waesams - 140)
s Waisew (s t—1)de, n=1, 3.5, -~

where W,.1spw(#, F) is the smoothed pseudo~
Wigner distribution (x==1). or the smoothed
version of the sliced WHOMS (n=3, 5, ---).

4. Numerical Example

The previons theoretical observations are ver-
ified via a simulation, the results of which are
shown in Fig. 2. In Fig. 2 (a), The SWFOMS is
computed for a 128 point time series at an
assumed sampling rate of 100 Hz. The signal
contains two components occurring at different
times, 0.2s and 1.08 s, but at the same frequency,
12.5 Hz. In this case there are three sets of cross
~terms, in contrast to the WVD which would only
generate a single set of cross-terms as shown in

O —
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13
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| S —nz __u-‘_ -— ...0\0._. - a-.a - .I. — “z._
Tore{sac)
(b
Fig. 2 Comparison between the WVD und

SWFOMS for the two components signal
centred at 0.2s and 1.08 s with 12.5Hz (a)
SWFOMS (by WVD

Fig. 2(b). The SWFOMS cross~terms appear at
quarter intervals between the two components.
The off-center cross—terms at 1/4 and 3/4 of the
interval are oscillatory albeit only in the fre-
gquency direction. the cross-terms
appearing at mid-point contains both an oscil-
latory element and a non-oscillating element.

However,

Figure 3 shows the results of applying the
exponential kernel to the data depicted in Fig. 2
{(a). The results of this simulation are less satisfy-
ing since the exponential kernel is poorly suited
to removing cross-terms between vertically and
horizontally displaced components{since it is
impossible to smooth non-oscillating cross-terms
by the exponential kernel funciion). The effective-
ness of smoothing the SWFOMS using the



Fault Diagnosis of a Gearbox Using the Sliced Wigner Fourth Order Time Frequency Method--- 945

- — S — g—

az o4 o8 os 1 12
T ec)

Fig. 3 The SWFOMS using an exponential kernel
for the two components signal centred at 0.2s
and 1.08 s with 12.5Hz
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Fig. 4 The SWFOMS using the y-method for the
two components signal centred at 0.2s and 1.
08 s with 12.5Hz

y-method is again demonstrated via a simple
simulation. Figure 4 depicts the SWFOMS calcu-
lated for the same data set as used to compute Fig.
2 using the y~method. In this case the sampling
frequency is 100Hz, the number of samples is 512
for fs, and #—#=0.88 s. 0.12 s is used as the
width of the window for y(7), and 0.64 s is the
duration of the sliding window j}(r) with a
bandwidth of 50Hz. According to these results,
the non-oscillating cross-terms can be eliminated
as shown in Fig. 4.

5. Application

In general, vibration signals from a gearbox
under normal conditions consist of tonal compo-

nents related to the rotation speed and broadband
noise. while under faulty condition, impulsive
signals are added to them (Stewart, 1977 and
Randall 1982). These tmpulsive signals may be
due to a change of stiffness or mass in the system
or due to impact. Therefore, if we detect impul-
sive signals exactly, we can diagnose the faulis
and characterise the change in dynamic character-
istics of the system. When the damage is fully
developed, the impulsive signal is visible in the
time domain (Lee, 1999). However, at early
stages of damage, it is often difficult to detect
these impulsive signals because they are embed-
ded in the normal vibration signal. Thus, normal
vibration signal becomes background noise. The
human ear can sometimes detect these impulsive
signals, and a skilled engineer can both detect and
characterise the fault. Therefore. 10 aid fault
detection in gearbox, it is valuable to enhance
impulsive signals by removing or reducing the
background noise prior to further processing.
This pre-processed signal can proceed based on
several signal-processing technigues. As one pre-
processing method. time domain averaging
{Stewart, 1977) has been used, but it requires the
reference signal to be synchronised 1o the rotating
speed. However, when a reference signal is un-
available. the two-stage Adaptive Line Enhancer
{ALE) achieves this aim {Lee and White,
1998a) .

Figure 5(a) shows the vibration signal mea-
sured on the tooth of a faulty gear of the pinion.
This data is the same as that used by Dalpiaz
(Dalpiaz. et al., 1996), and was supplied by one
of the authors. The speed of the wheel is 1500
rpm. while the number of samples per rotation is
1024 {We note that This is not time-averaged
datay. From Fig. 5{a) it is difficult to see the
impulsive signal due to the fault because of the
large amplitude tonal signals, which constitute
the gear meshing frequency and its harmonic
frequencies. In this gear the pinion has 28 teeth
and the wheel has 35. Thus the 53 order repre-
sents the fundamental meshing frequency. In
order to remove the fundamental and harmonics
of the tooth meshing frequency, the two-stage
ALE s employed. The enhanced impulsive signal
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Fig. 5 Using Two-Stage ALE (Adaptive Line En-
hancer) the detection of impulsive signals
due to a faulty gear (a) Raw signali vi-
brational signal measured on a gear (b)
Enhanced impulsive signal by using Two
-Stage ALE.

generated by faults is shown in Fig. 5(b). In
order to see both the time and frequency informa-
tion simultaneously, the Wigner-Ville Distribu-
tion using an exponential kernel is applied to the
raw signal as shown in Fig. 6(a). The mashing
frequency (the 53 order) and its harmonics are
dominant because the impulsive signal is hidden.
After pre-processing the signal using the two-
stage ALE and then applying the Wigner-Ville-
Distribution with an exponential kernel, Fig. 6
(b) is obtained. in which the effect of the impul-
sive signal is visible. However, the frequency
components are still interfered by the residue of
the cross-terms. The SWFOMS using a y-method

Fig. 6 Time-frequency analysis of vibrational data
measured on the gearbox {a) the WVD using
an exponential kernel for raw vibrational
data measured on a gear (b) the WVD using
an exponential kernel for enhanced signal (¢)
the SWFOMS using the y-method for enhan-
ced signal
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for this enhanced signal creates a clearer represen-
tation of this fault signal as shown in Fig. 6(c).
From this result, one can conclude that the gear
fault occurs at shaft angles of 180° and at 11028
orders of shaft rotating speed. This appears to
result from an increase in the sidebands of the 20¢
meshing frequency of the wheel gear. This fault at
shaft angle 180° also includes the ghost''® compo-
nent at order 300.

6. Conclusion

In this paper. time-frequency methods using
higher-order statistics are discussed. The
WHOMS is a general expansion of the conven-
tional Wigner-Ville Distribution and preserves its
properties. In both higher-order time frequency
analyses, as the order increases, the number of
cross~terms also increases. This problem can be
reduced using the principal sliced WHOMS.
However, for horizontally or vertically displaced
components. the sliced WHOMS suffers from non-
oscillating cross-terms. which lead to failure of
the smoothing method for the reduction of cross-
terms. In order to smooth non-oscillating cross-
terms, the y-method for sliced WHOMS can be
used. The SWFOMS using the y-method is a
more useful tool for the detection of impulsive
signals embedded in broadband noise. and can be
applied to the effective analysis of faults in a
gearbox. ‘
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